A.S.O. "S.Croce e Carle" Cuneo

S.C. Endocrinologia, Diabetologia e Metabolismo S.S. Malattie Metaboliche e Diabetologia S.C. Nefrologia

Altre terapie di comune impiego nel paziente diabetico: Ipolipemizzanti, anticonvulsivanti, inibitori della fosfodiesterasi

Relatore: G. Magro (Cuneo)

Sabato, 25 Gennaio 2014

La nefropatia diabetica si manifesta nel 20-40% dei pazienti diabetici

Tutti gli individui con nefropatia diabetica devono essere considerati a elevato rischio di eventi cardiovascolari e dovrebbero essere trattati per ridurre tale rischio, attraverso un intervento mirato a correggere tutti i fattori di rischio. (Livello della prova I, Forza della raccomandazione A)

Ottimizzare il controllo degli altri fattori di rischio (lipidi, fumo) per rallentare la progressione della nefropatia (Livello della prova I, Forza della raccomandazione B)

Standard italiani per la cura del diabete mellito 2009-20210; SID

Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials

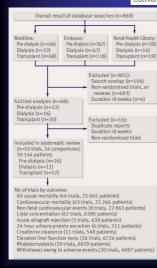
Giovanni F M Strippoli, editor of Cochrane Renal Group, 12,3 Sankar D Navaneethan, clinical fellow in nephrology,⁴ David W Johnson, professor of nephrology,⁵ Vlado Perkovic, associate director (dinical research), Fabio Pellegrini, biostatistician, Antonio Nicolucci, head, Jonathan C Craig, editor in chief of Cochrane Renal Group and associate professor of epidemiology^{1,3}

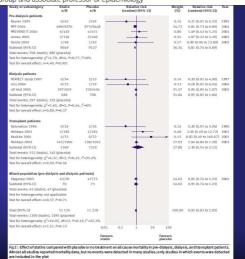
Table 2 Effects of statins on lipid	concentrations and renal func	tion in patients with chronic kidney	disease
Outcome	No of trials (No of patients)	Weighted mean difference (95% CI)	Heterogeneity (I2; %)
Total cholesterol (mg/dl)*	42 (6390)	-42.28 (-47.25 to -37.32)	94.9
LDL cholesterol (mg/dl)*	39 (6216)	-43.12 (-47.85 to -38.40)	94.1
HDL cholesterol (mg/dl)*	40 (5621)	0.41 (-0.78 to 1.60)	94.4
Triglycerides (mg/dl)†	39 (5569)	-23.71 (-33.52 to -13.90)	89.5
Glomerular filtration rate (ml/min or ml/min/1.73 m²)	11 (548)	1,48 (-2.32 to 5,28)	62.0
Urinary protein excretion (g/24 h)	6 (311)	-0.73 (-0.95 to -0.52)	58.6

*Multiply by 0.0259 to convert to mmol/l.
†Multiply by 0.01 to convert to mmol/l.

Conclusions:

These results suggest that statin treatment is safe and reduces the risk of major cardiovascular events in patients with chronic kidney disease in a similar fashion to that seen in trials of statins in non-chronic kidney disease populations.


We did not show an effect on all cause mortality, but this may reflect inadequate statistical power.


Accepted: 11 January 2008

Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials

Giovanni F M Strippoli, editor of Cochrane Renal Group, ^{12,3} Sankar D Navaneethan, clinical fellow in nephrology, ⁴ David W Johnson, professor of nephrology, ⁵ Vlado Perkovic, associate director (clinical research), ⁶ Fabio Pellegrini, biostatistician, ² Antonio Nicolucci, head, ² Jonathan C Craig, editor in chief of Cochrane Renal Group and associate professor of epidemiology^{1,3}

Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials

Giovanni F M Strippoli, editor of Cochrane Renal Group, ¹²³ Sankar D Navaneethan, clinical fellow in nephrology, ² David W Johnson, professor of nephrology, ² Vlado Perkovic, associate director (clinical research), ⁶ Fabio Pellegrini, biostatistician, ² Antonio Nicolucci, head, ² Jonathan C Craig, editor in chief of Cochrane Renal Group and associate professor of epidemiology. ³

WHAT IS ALREADY KNOWN ON THIS TOPIC

Patients with chronic kidney disease are at increased risk of cardiovascular disease

Statins reduce cardiovascular mortality and all cause mortality in the general population

The role of statins in chronic kidney disease is controversial

WHAT THIS STUDY ADDS

Statins reduce cardiovascular deaths in patients with chronic kidney disease by a similar rate to that seen in the general population

The efficacy of statins in reducing all cause mortality in kidney disease patients and their role in primary prevention need to be established in ongoing trials

Statins are safe as regards major side effects such as hepatotoxicity, rhabdomyolysis, and treatment withdrawal

Accepted: 11 January 2008

Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials

Giovanni F.M. Strippoli, editor of Cochrane Renal Group, ^{13,3} Sankar D. Navaneethan, clinical fellow in neptrology, ² David W. Johnson, professor of nephrology, ² Vlado Perkovic, associate director (clinical research), ² Fabio Pellegrini, biotatisticala, ² Antonio Nicolucci, head, ² Jonathan C. Craig, editor in chief of Cochrane Renal Group and associate professor of epidemiology, ¹³

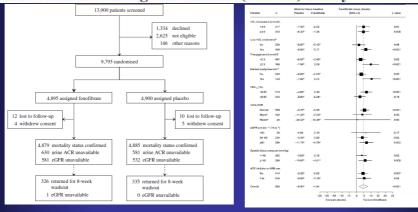
Le statine riducono in maniera significativa le concentrazioni lipidiche e gli end point cardiovascolari in pazienti con malattia renale cronica, indipendentemente dallo stadio della malattia. Non sono stati osservati benefici significativi del trattamento con statine sulla mortalità per tutte le cause. Gli effetti protettivi renali delle statine sono incerti.

Dalla metanalisi emerge che il trattamento con statine in pazienti in pre-dialisi riduce il rischio di mortalità per tutte le cause del 19%, valore che è assimilabile al beneficio legato allo stesso trattamento nella popolazione generale. Quando l'analisi viene estesa ai pazienti dializzati e a quelli trapiantati il beneficio scompare. Viene confermato invece un rischio inferiore di mortalità legata a cause cardiovascolari. In termini di tollerabilità, non sono state rilevate differenze relativamente al rischio di alterazioni epatiche o muscolari (aumento CPK). Questi risultati suggeriscono che il beneficio osservato per le statine nella popolazione generale si applica anche ai pazienti con velocità di filtrazione glomerulare ridotta e a quelli dializzati.

La metanalisi dimostra che le statine possono ridurre la proteinuria in modo modesto ma non influenzano i tempi di declino della velocità di filtrazione glomerulare. Inoltre non ci sono studi che abbiano valutato come esito la progressione della malattia fino allo stadio finale.

Non ci sono prove di effetti benefici delle statine che vadano oltre alla riduzione del rischic cardiovascolare mentre sono possibili effetti avversi che devono spingere a una prescrizione appropriata.

Accepted: 11 January 2008

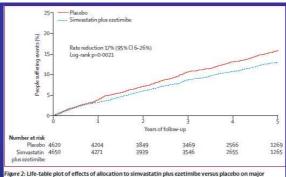

Trattamento dislipidemia nella nefropatia Diabetica:

Non sono disponibili studi randomizzati, che abbiano documentato effetti protettivi delle statine sulla progressione della nefropatia diabetica.

Lo studio FIELD ha documentato una riduzione dell'albuminuria e un rallentamento della curva di perdita del filtrato glomerulare associata all'uso del fibrato.

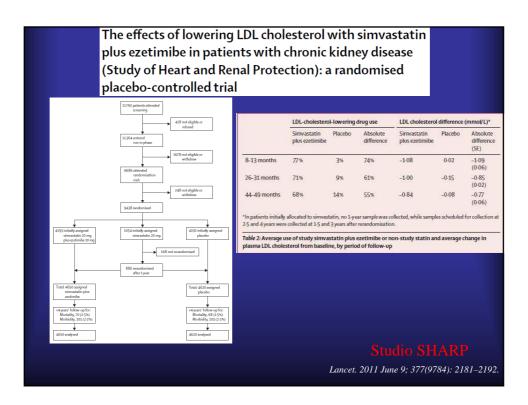
L'associazione statina-ezetimibe ha dimostrato un effetto benefico sulla progressione delle nefropatie croniche (Studio SHARP).

Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study


In conclusion, we demonstrated in pre-specified analyses that fenofibrate reduces albuminuria progression and may reduce loss of renal function. This appears to be independent of, and therefore additive to renin–angiotensin system blockade and glycaemic control. The size and consistency of the estimated GFR and albuminuria benefits support use of fenofibrate in type 2 diabetes to reduce renal morbidity, especially in patients with dyslipidaemia

Diabetologia (2011) 54:280-290

Benefits of Lipid lowering in Stages of CKD


CKD stage	CV events ↓	Based on trial
1	Yes	Post-hoc analysis
2	Yes	from: Care, HPS, TNT, 4S, AFCAPS/ Texcaps,
3	Yes	VA-HIT
4	Yes	SHARP
5	Yes	SHARP
Dialysis	Probably	SHARP (4D, Aurora)
Transplant	Probably	ALERT

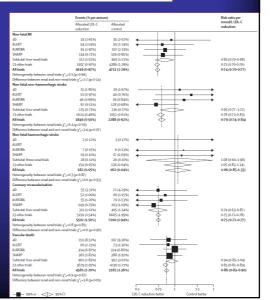

The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial

Conclusion: Reduction of LDL cholesterol with simvastatin 20 mg plus ezetimibe 10 mg daily safely reduced the incidence of major atherosclerotic events in a wide range of patients with advanced chronic kidney disease. Studio SHARP

Lancet. 2011 June 9; 377(9784): 2181-2192.

The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial

Panel: Research in context


Systematic review

The Cholesterol Treatment Trialists' collaborative meta-analysis of individual participant data from 26 randomised trials' has shown that lowering LDL cholesterol with a statin regimen reduces the risk of myocardial infarction, coronary death, ischaemic stroke, and coronary revascularisation procedures by about a fifth per 1 mmol/L LDL cholesterol reduction in a wide range of people. However, none of the three trials¹⁹⁻¹ in patients with chronic kidney disease included in that meta-analysis reported a significant reduction in its primary vascular disease outcome, leading to uncertainty about whether lowering of LDL cholesterol is effective in renal patients.

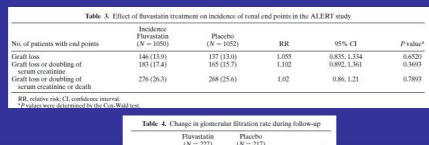
Interpretation

The SHARP randomised trial has now shown that lowering of LDL cholesterol with simvastatin plus ezetimibe safely reduces the risk of major atherosclerotic events in a wide range of patients with chronic kidney disease. When the SHARP results are compared with those of the previous statin trials in renal patients, it appears that the absence of significant reductions in earlier trials could have been due both to the much smaller number and the much smaller proportion of vascular events in their primary outcomes that were related to atherosclerosis and, hence, preventable by lowering of LDL cholesterol.

Lancet. 2011 June 9; 377(9784): 2181-2192

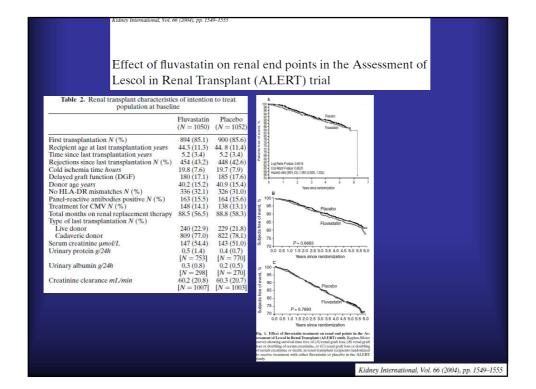
Effect of fluvastatin on renal end points in the Assessment of Lescol in Renal Transplant (ALERT) trial

CONCLUSION:


The ALERT trial has established the benefits and safety of fluvastatin treatment for the prevention of cardiac morbidity and mortality in renal transplant recipients.

The present analysis of the ALERT trial showed no significant effect of fluvastatin on the prespecified renal end points of renal graft loss or doubling of serum creatinine.

Thus, early introduction of statin therapy after renal transplantation can be recommended for cardiac protection, but not for renal protection in general.


Kidney International, Vol. 66 (2004), pp. 1549-1555

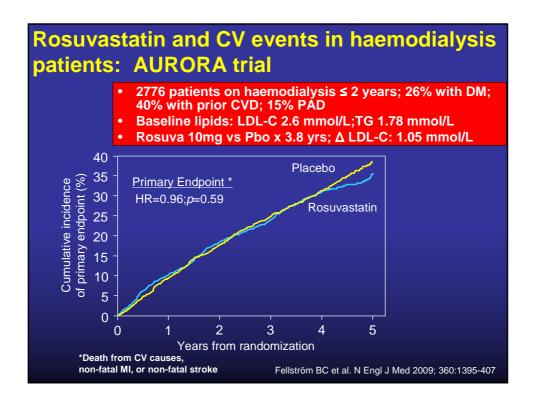
Effect of fluvastatin on renal end points in the Assessment of Lescol in Renal Transplant (ALERT) trial

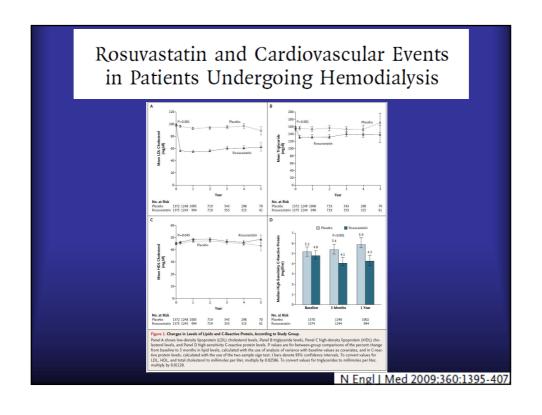
		Fluvastatin $(N = 222)$		Placebo $(N = 217)$		p
Visit	N	Mean (SD)	N	Mean (SD)	Difference	value
GFR mL/min	/1.73	m^2		111		
Baseline	222	52.9 (21.4)	217	52.1 (20.0)	-0.8	
18 months	191	51.5 (20.5)	185	49.3 (19.4)	-2.1	0.7571
36 months	178	50.5 (21.7)	172	49.6 (21.7)	-0.9	0.7545
60 months	130	46.0 (22.2)	114	47.1 (20.0)	1.0	0.8843
GFR by Cock	croft	-Gault formu	ıla mi	/min/1.73 m	2	
Baseline	218	64.7 (24.4)	208	64.3 (19.3)	-0.8	
36 months	177	55.6 (19.1)	169	56.6 (18.8)	1.0	0.6235
60 months	128	55.2 (21.9)	110	59.2 (20.2)	4.0	0.5156

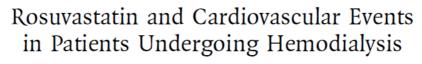
Kidney International, Vol. 66 (2004), pp. 1549–1555

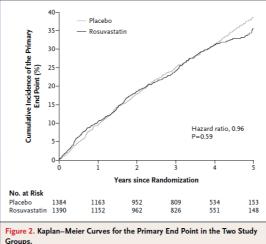
Effect of fluvastatin on renal end points in the Assessment of Lescol in Renal Transplant (ALERT) trial

CONCLUSION


The ALERT trial has established the benefits and safety of fluvastatin treatment for the prevention of cardiac morbidity and mortality in renal transplant recipients. The present analysis of the ALERT trial showed no significant effect of fluvastatin on the prespecified renal end points of renal graft loss or doubling of serum creatinine. Thus, early introduction of statin therapy after renal transplantation can be recommended for cardiac protection, but not for renal protection in general.


Kidney International, Vol. 66 (2004), pp. 1549-1555


Rosuvastatin and Cardiovascular Events in Patients Undergoing Hemodialysis


In conclusion, the AURORA trial evaluated the effect of rosuvastatin on cardiovascular events in a population of patients with end-stage renal disease.

Despite significantly reducing the levels of LDL cholesterol and high-sensitivity C-reactive protein, treatment with rosuvastatin was not associated with a reduction in the combined end point of myocardial infarction, stroke, or death from cardiovascular causes.

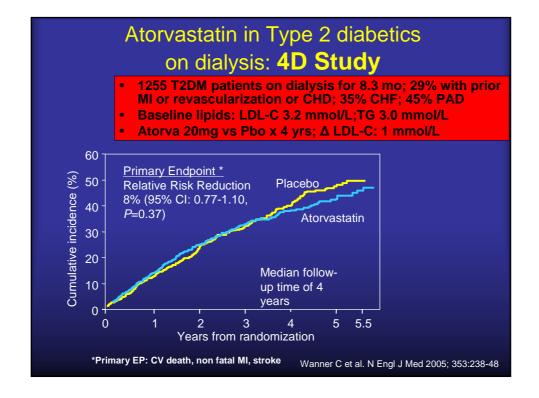
Groups.

The primary end point was the first major cardiovascular event.

N Engl J Med 2009;360:1395-407.

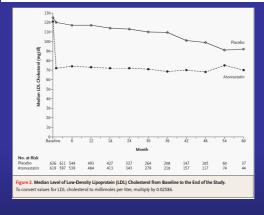
Aurora: Primary endpoint

Placebo (n=636)	Rosuvastatir (n=619)	n RR (95% CI)
408	396 (0.96 (0.84-1.11)*
324	324	
107	91	
21	23	
45	53	
	(n=636) 408 324 107 21	(n=636) (n=619) 408 396 324 324 107 91 21 23


* P=0.59

Fellström BC et al. N Engl J Med 2009; 360:1395-407

Rosuvastatin and Cardiovascular Events in Patients Undergoing Hemodialysis

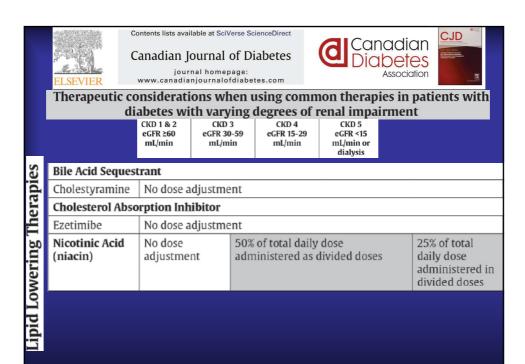

In conclusion, the AURORA trial evaluated the effect of rosuvastatin on cardiovascular events in a population of patients with end-stage renal disease. Despite significantly reducing the levels of LDL cholesterol and high-sensitivity C-reactive protein, treatment with rosuvastatin was not associated with a reduction in the combined end point of myocardial infarction, stroke, or death from cardiovascular causes.

N Engl J Med 2009;360:1395-407

Endpoint	Placebo (n=636)	Atorvastatin (n=619)	RR (95% CI)
Primary endpoint	243	226	0.92 (0.77-1.1
Cardiac death	149	121	
Non-fatal MI	79	70	
Fatal stroke	13	27	
Non-fatal stroke	32	33	

Atorvastatin in Patients with Type 2 Diabetes Mellitus Undergoing Hemodialysis

End Point	Placebo Group (N=636)	Atorvastatin Group (N=619)	RR (95% CI)	P Value
		o. (%)		
Primary	243 (38)	226 (37)	0.92 (0.77-1.10)	0.37
Death from cardiac causes	149 (23)	121 (20)	0.81 (0.64-1.03)	0.08
Sudden death	83 (13)	77 (12)		
Fatal myocardial infarction	33 (5)	23 (4)		
Death due to congestive heart failure	24 (4)	17 (3)		
Death after interventions to treat coronary heart disease	4 (0.6)	3 (0.5)		
Other death due to coronary heart disease	5 (0.8)	1 (0.2)		
Nonfatal myocardial infarction	79 (12)	70 (11)	0.88 (0.64-1.21)	0.42
Silent	50 (8)	41 (7)		
Nonsilent	35 (6)	33 (5)		
Fatal stroke	13 (2)	27 (4)	2.03 (1.05-3.93)	0.04
Ischemic	7 (1)	18 (3)		
Hemorrhagic	5 (0.8)	3 (0.5)		
Other (not classified)	1 (0.2)	6 (1)		
Nonfatal stroke	32 (5)	33 (5)	1.04 (0.64-1.69)	0.89
Secondary				
All cardiac events combined	246 (39)	205 (33)	0.82 (0.68-0.99)	0.03
Death from cardiac causes	149 (23)	121 (20)		
Nonfatal myocardial infarction	79 (12)	70 (11)		
PTCA	45 (7)	34 (5)		
CABG	30 (5)	24 (4)		
Other interventions to treat coronary heart disease	0	1 (0.2)		
All cerebrovascular events combined	70 (11)	79 (13)	1.12 (0.81-1.55)	0.49
Stroloe	44 (7)	59 (10)	1.33 (0.90-1.97)	0.15
Ischemic	33 (5)	47 (8)		
Hemorrhagic	8 (1)	5 (1)		
Other (not classified)	6 (1)	10 (2)		
TIA or PRIND	31 (5)	26 (4)		
Death from all causes	320 (50)	297 (48)	0.93 (0.79-1.08)	0.33
Death from causes other than cardiovascular or cerebrovascular disease	158 (25)	149 (24)	0.95 (0.76-1.18)	0.62
Fatal infection	68 (11)	60 (10)		
Fatal cancer	19 (3)	17 (3)		
Other	71 (11)	72 (12)		


Conclusions: Atorvastatin had no statistically significant effect on the composite primary end point of cardiovascular death, nonfatal myocardial infarction, and stroke in patients with diabetes receiving hemodialysis.

Analysis of Studies evaluating CVD in CKD populations 4D, ALERT, AURORA, SHARP

	Treatment & Follow-up	Primary Endpoint	RR	P
4D (1255 Dialysis pat.) ¹	Atorva 20mg 4 years	Cardiac death, non fatal MI and stroke	0.92 (0.77 – 1.10)	p=0.37
ALERT (2102 Trans- plant pat.) ²	Fluva 40- 80mg 5 years	Cardiac death, non fatal MI and coronary interv. procedure	0.83 (0.64 – 1.06)	p=0.139
AURORA (2776 Dialysis pat.) ³	Rosuva 10mg 3.8 years	CV death, non fatal MI and non fatal stroke	0.96 (0.84-1.11)	p=0.59
SHARP (9438 Pre & dialysis pat.)*	Simva 20-Eze 10 mg 4.9 years	Coronary death, MI, ischemic stroke, or revascularization	0.83 (0.74- 0.94)	p=0.0022

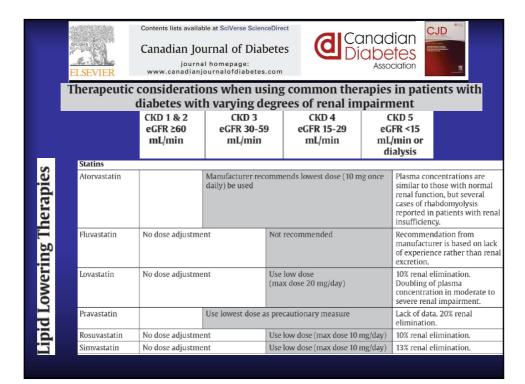
1 Wanner C et al. *N Engl J Med*. 2005;353(3):238–248 3 Fellström BC et al. *N Engl J Med*. 2009;360(14):1395-1407 2 Holdaas H et al. Lancet. 2003;361(9374):2024–2031

* www.SHARPinfo.org

Contents lists available at SciVerse ScienceDirect

Canadian Journal of Diabetes journal homepage: www.canadianjournalofdiabetes.com

Canadian Diabetes Association



Therapeutic considerations when using common therapies in patients with diabetes with varying degrees of renal impairment

CKD 1 & 2	CKD 3	CKD 4	CKD 5
eGFR ≥60	eGFR 30-59	eGFR 15-29	eGFR <15
mL/min	mL/min	mL/min	mL/min or
			dialysis

Lipid Lowering Therapies

ш							
l	Fibrates		lomyolisis when fibrates used in combination with statins is increased in CKD and, therefore, should be avoided.				
۱	Bezafibrate	No dose adjustment	Use alternative agent				
1	Fenofibrate	No dose adjustment	Reduce dose Use alternative agent		Fenofibrate micronized should not be used as initial treatment in CKD. Initiate with Lipidil EZ 48 mg/day.		
	Gemfibrozil	No dose adjustment	Use alternative agent		Concomitant use of gemfibrozil and repaglinide should be avoided as can result in hypoglycemia.		

Contents lists available at SciVerse ScienceDirect

Canadian Journal of Diabetes

journal homepage: www.canadianjournalofdiabetes.com

of Diabetes
lage:
Association

Therapeutic considerations when using common therapies in patients with diabetes with varying degrees of renal impairment

CKD 1 & 2	CKD 3	CKD 4	CKD 5
eGFR ≥60	eGFR 30-59	eGFR 15-29	eGFR <15
mL/min	mL/min	mL/min	mL/min or
			dialysis

Neuropathy Therapies

Anticonvulsants					
Gabapentin	Max 3600 mg/ day divided tid	Max 1400 mg/ day divided bid	Max 700 mg/ day given once daily	Max 150-300 mg/day given once daily	Hemodialysis supplemental dosing required: 125-350 mg after each 4 hours of hemodialysis.
Pregabalin	Max 600 mg/ day divided bid or tid	Max 300 mg/ day divided bid or tid	Max 150 mg/day given once daily or bid	Max 75 mg/day given once daily	Hemodialysis supplemental dosing required.

Pharmacokinetics of Pregabalin in Subjects with

Various Degrees of Renal Function

Pregabalin dosage adjustment should be considered for patients with CLcr < 60 mL/min. A 50% reduction in pregabalin daily dose is recommended for patients with CLcr between 30 and 60 mL/min compared to those with CLcr > 60 mL/min. Daily doses should be further reduced by approximately 50% for each additional 50% decrease in CLcr. Pregabalin was highly cleared by hemodialysis. Supplemental pregabalin doses may be required for patients on chronic hemodialysis treatment after each hemodialysis treatment to maintain steady-state plasma pregabalin concentrations within desired ranges.

J Clin Pharmacol. 2003 Mar; 43(3):277-83

Contents lists available at SciVerse ScienceDirect

Canadian Journal of Diabetes

journal homepage: www.canadianjournalofdiabetes.com

Therapeutic considerations when using common therapies in patients with diabetes with varying degrees of renal impairment

CKD 1 & 2 eGFR ≥60 mL/min CKD 3 eGFR 30-59 mL/min CKD 4 eGFR 15-29 mL/min CKD 5 eGFR <15 mL/min or dialysis

Erectile Dysfunction Therapies

hosphodiesterase-5 (PDE-5) Inhibitors

riiospiiodiestera	r nosphodiesterase-3 (FDE-3) fillibitors						
Sildenafil	No dose adjustment		Adjustment Reduce starting dose to 25 mg				
Tadalafil		10-20 mg (max fr more than 3 time	equency of alternate days and not s per week)	2.5-5 mg once a day may be considered in CKD stage 3 but daily dosing is not recommended in CKD stage 4 and 5.			

Compromissione della funzionalità renale Levitra (Vardenafil

Non è necessario modificare la dose nei pazienti con compromissione della funzionalità renale da lieve a moderata. Nei pazienti con grave compromissione della funzionalità renale (clearance della creatinina <30 ml/min), si deve prendere in considerazione una dose iniziale di 5 mg. In base alla tollerabilità e all'efficacia, la dose può essere aumentata a 10 mg e successivamente a 20 mg.

ACC/AHA Expert Consensus Document

Use of Sildenafil (Viagra) in Patients With Cardiovascular Disease

Summary Table of Clinical Recommendations

- A. Use of Viagra clearly contraindicated
- 1. Concurrent use of nitrates (see Appendix A)
- B. Cardiovascular effects of Viagra may be potentially hazardous (use dependent on individual clinical assessment)
- Patients with active coronary ischemia who are not taking nitrates (eg, positive exercise test for ischemia)
- Patients with congestive heart failure and borderline low blood pressure and borderline low volume status
- 3. Patients on a complicated, multidrug, antihypertensive program
- Patients taking drugs that can prolong the half-life of Viagra (see Appendix B)

Renal Dysfunction

Patients with severe renal impairment (creatinine clearance, 30 mL/min) have a reduced clearance of sildenafil. Plasma levels of the parent drug and of its metabolites in patients with severe renal impairment are approximately twice those found in healthy subjects. Particular care should be taken in the administration of concomitant medications that may lower blood pressure in patients receiving sildenafil whose renal function is severely impaired. There were no significant effects on the metabolism of sildenafil seen in subjects with mild (creatinine clearance 50 to 80 mL/min) or moderate (creatinine clearance 30 to 49 mL/min) renal impairment

Grazie per l'attenzione